Automated approach to detecting behavioral states using EEG-DABS

نویسندگان

  • Zachary B. Loris
  • Mathew Danzi
  • Justin Sick
  • W. Dalton Dietrich
  • Helen M. Bramlett
  • Thomas Sick
چکیده

Electrocorticographic (ECoG) signals represent cortical electrical dipoles generated by synchronous local field potentials that result from simultaneous firing of neurons at distinct frequencies (brain waves). Since different brain waves correlate to different behavioral states, ECoG signals presents a novel strategy to detect complex behaviors. We developed a program, EEG Detection Analysis for Behavioral States (EEG-DABS) that advances Fast Fourier Transforms through ECoG signals time series, separating it into (user defined) frequency bands and normalizes them to reduce variability. EEG-DABS determines events if segments of an experimental ECoG record have significantly different power bands than a selected control pattern of EEG. Events are identified at every epoch and frequency band and then are displayed as output graphs by the program. Certain patterns of events correspond to specific behaviors. Once a predetermined pattern was selected for a behavioral state, EEG-DABS correctly identified the desired behavioral event. The selection of frequency band combinations for detection of the behavior affects accuracy of the method. All instances of certain behaviors, such as freezing, were correctly identified from the event patterns generated with EEG-DABS. Detecting behaviors is typically achieved by visually discerning unique animal phenotypes, a process that is time consuming, unreliable, and subjective. EEG-DABS removes variability by using defined parameters of EEG/ECoG for a desired behavior over chronic recordings. EEG-DABS presents a simple and automated approach to quantify different behavioral states from ECoG signals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier

Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...

متن کامل

Application of Electroencephalography (EEG) in Ergonomics: A systematic review study

Background and Objectives: Electroencephalography is one of the non-invasive and relatively inexpensive methods that can be used to evaluate neurophysiology and cognitive functions. This systematic review study was performed with the aim of using electroencephalography (EEG) in ergonomics. Methods: In this review study, all articles published in Persian and English on the application of elec...

متن کامل

"Time for dabs": Analyzing Twitter data on marijuana concentrates across the U.S.

AIMS Media reports suggest increasing popularity of marijuana concentrates ("dabs"; "earwax"; "budder"; "shatter; "butane hash oil") that are typically vaporized and inhaled via a bong, vaporizer or electronic cigarette. However, data on the epidemiology of marijuana concentrate use remain limited. This study aims to explore Twitter data on marijuana concentrate use in the U.S. and identify dif...

متن کامل

A hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine

Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...

متن کامل

eXpress: Guided Path Exploration for Regression Test Generation

Regression test generation aims at generating a test suite that can detect behavioral differences between the original and the new versions of a program. Regression test generation can be automated by using Dynamic Symbolic Execution (DSE), a state-of-the-art test generation technique. DSE explores all feasible paths in the program but exploration of all these paths can often be expensive. Howe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2017